The Economic Impact of User-Generated Content on the Internet: Combining Text Mining with Demand Estimation in the Hotel Industry

نویسندگان

  • Anindya Ghose
  • Panagiotis Ipeirotis
  • Beibei Li
چکیده

Increasingly, user-generated product reviews, images and tags serve as a valuable source of information for customers making product choices online. An extant stream of work has looked at the economic impact of reviews. Typically, the impact of product reviews has been incorporated by numeric variables representing the valence and volume of reviews. In this paper, we posit that the information embedded in product reviews cannot be fully captured by a single scalar value. Rather, we argue that product reviews are multifaceted and hence, the textual content of product reviews is an important determinant of consumers’ choices, over and above the valence and volume of reviews. Based on a unique dataset of hotel reservations available to us from Travelocity, we estimate demand for hotels using a two-step random coefficient based structural model. We use text mining techniques that allow us to incorporate textual information from user review in demand estimation models by inferring the sentiments embedded in them and supplement them with image classification techniques. The dataset contains complete information on transactions conducted over a 3 month period from Nov – Jan 2009 for hotels in the US. We have data on usergenerated content from three sources: (i) user-generated hotel reviews from two well known travel search engines, Travelocity and Tripadvisor, (ii) tags generated by users identifying different locational attributes of hotels from Geonames.org, and (iii) user contributed opinions on the most important hotel characteristics from Amazon Mechanical Turk. Moreover, since some location-based characteristics, such as proximity to the beach, are not directly measurable based on UGC, we use image classification techniques to infer such features from the satellite images of the area. These different data sources are then merged to create one comprehensive dataset that enables us to estimate the weight that consumers place on different hotel characteristics. We then propose to design a new hotel ranking and recommendation system based on the empirical estimates of consumer surplus from hotel transactions. By improving the recommendation strategy of travel search engines, it can raise the conversion rate for a particular hotel, hence increasing the return-on-investment for travel search engines.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

“Estimating Demand for Hotels by Mining User-Generated and Crowd- Sourced Content on the Internet”

User-Generated Content (UGC) is changing the way consumers shop for goods. It is increasingly being recognized that the textual content of product reviews is an important determinant of consumers’ choices, over and above any numeric information. Similarly, websites that facilitate the creation of social tags by users can influence the desirability of a product or service. Moreover, one can harn...

متن کامل

Towards Designing Ranking Systems for Hotels on Travel Search Engines: Combining Text Mining and Image Classification with Econometrics

In this paper, we empirically estimate the economic value of different hotel characteristics, especially the location-based and service-based characteristics given the associated local infrastructure. We build a random coefficients-based structural model taking into consideration the multiple-levels of consumer heterogeneity introduced by different travel contexts and different hotel characteri...

متن کامل

Designing Ranking Systems for Hotels on Travel Search Engines by Mining User-Generated and Crowdsourced Content

User-Generated Content (UGC) on social media platforms is changing the way consumers shop for goods. However, current product search engines fail to effectively leverage information created across diverse social media platforms. Moreover, current ranking algorithms in these product search engines tend to induce consumers to focus on one single product characteristic dimension (e.g., price, star...

متن کامل

Designing Ranking Systems for Hotels on Travel Search Engines by Mining User-Generated and Crowd-Sourced Content1

User-Generated Content (UGC) on social media platforms and product search engines is changing the way consumers shop for goods online. However, current product search engines fail to effectively leverage information created across diverse social media platforms. Moreover, current ranking algorithms in these product search engines tend to induce consumers to focus on one single product character...

متن کامل

An Investigation on the User Behavior in Social Commerce Platforms: A Text Analytics Approach

Nowadays, the tourism industry accounts for approximately 10% of the global GDP, while it only contributes 3% of the economy in Iran. Since the pressure of US sanctions increases day after day on the Iranian economy, the necessity of paying attention to this industry as a source of foreign currency is felt more than ever. The purpose of this research is to analyze the reviews of users of social...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009